Transcription factor binding site prediction with MATCHTM: TRANSFAC® professional (A) vs. TRANSFAC® public (B)

A: Analysis result with the MATCHTM tool in TRANSFAC® prof.:

B: Analysis result with the MATCHTM tool on gene-regulation.com using TRANSFAC® public data:

Analysis of 120 nucleotides of the human VEGFA promoter with the MATCHTM tool in TRANSFAC professional predicts fourteen sites for eleven different transcription factors (Fig. A). At least for four of these factors, SMAD, HIF1, AP-1 and Runx2 (predicted binding sites framed in red in the figure above), supporting evidence has been published as referenced in the TRANSFAC® professional database: "Our findings indicate that Smad directly binds to Vegfa chromatin and represses Vegfa transcriptional activity." (PMID: 23863481) "Site-directed mutational analysis of the VEGF gene promoter revealed that an HIF-1 binding site (HBS) and its downstream HIF-1 ancillary sequence (HAS) within the HRE are required as cis-elements for the transcriptional activation of VEGF by either hypoxia or nitric oxide (NO)." (PMID: 11056166) "A gel mobility shift assay showed that the inhibitory effect of CSA was associated with decreased AP-1 binding activity to the VEGF promoter, in a cAMP-dependent manner." (PMID: 12115224) "Physical and functional interactions between Runx2 and HIF-1α induce vascular endothelial growth factor gene expression." (PMID: 21793044)

With MATCH™ on the public website, at the same cut-offs, only one of these sites (AP-1) is detected (Fig. B).

Parameters:

Analyzed sequence: chr6:43769178..43769297 (hg38)

Cut-offs: matrix similarity = 0.97; core similarity = 1.00; Exclusion of low-quality matrices

Fig. A: MATCH™ in TRANSFAC® Release 2022.1; Profile: vertebrate_non_redundant.prf

Fig. B: MATCH[™] public 1.0 with library of positional weight matrices of TRANSFAC® public from 2005; Profile: vertebrate matrices